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Analysis of Planar Disk Networks
RENE R. BONETTI AND PLINIO TISSI

Abstract—The impedance matrix of a disk n-port is determined with

fringing fields at the disk edge included in the arrafysis. The theory is valid

for both stripffrse and rnicrostrip geometries and is also appffcable to

magnetic substrates. A simple quasi-static approximation to the disk

capacitance is obtained. Applicability to numericaf design is exempfffbxf

with the search for transmission zeros in a reciprocal 2 port. Experimental

results are presented for the l-port and 2-purt disks.

I. INTRODUCTION

P LANAI? NETWORK theory is becoming a powerful

tool for the design of microwave integrated circuits
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[1]-[4]. When compared to other physical structures,

planar networks offer the designer considerable freedom,

due not only to their size and shape but also to the large

variety of devices realizable with simple geometries.

A very simple shape, the disk, has already proven very

useful for the realization of junction circulators and pre-

sents interesting possibilities for other devices.

Well known theories for disk networks on magnetic

substrate [5]–[7] make use of the edge magnetic wall

(EMW) as a boundary condition at the disk edge and,

therefore, exterior fields are not included in the analysis.

With respect to this problem we quote Bosma [8]: “It is

the unsolved problem of the fringing field that makes
numerical design of circulators not yet very spectacular.”

Furthermore, in a recent paper by de Santis [9] transitions

from volume modes to edge guided modes were shown to

be strongly influenced by these fields.
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This work presents a theory for the general multiport

disk, which includes an analytical treatment of the fring-

ing fields and is also applicable to magnetic substrates. As

a consequence, it represents a sound basis for the accurate

design of MIC devices such as resonators, filters, and

circulators, The theory lends itself well to computational

implementation and numerical synthesis since the eigen-

functions are computed independently of the number,

positions, and widths of the ports. Consequently, the

search for optimum port parameters is performed by

means of relatively simple algorithms.

Examples of applications are given for isotropic resona-

tors and filters. *

II. FORMLJLATION OF GEOMETRY - BASIC

HYPOTHESES

The network consists of a highly conducting disk,

placed either between (Fig. l(a) and (b)) or above (Fig,

l(c) and (d)) a magnetic substrate, extending only to the

disk edge, and magnetized in the z direction. The outer

dielectric extends to infinity, or is bounded along a circu-

lar contour, by an electric or magnetic wall. The geometry

in the z direction is one of the two types described in Fig.

1. The disk is coupled to K ports, each spanning an angle

21)i(i=l,2,. ... K) at the edge, in such a way that no two

ports have any points in common (Fig. 2). Each port is

connected to a line, which is inbedded in the homoge-

neous outer dielectric.

As in previous works [5]–[7] the azimuthal component

of the RF magnetic field is assumed as constant along the

ports and only TM modes relative to the z axis are

considered, In the microstrip cases (Fig, l(c) and (d)) the

exterior fields (Rl < r < Rz) are limited from above by a

magnetic wall parallel to the ground plane at z = h. Cou-

pling between the exterior fields and the strip or micro-

strip lines is neglected, The operating frequency is re-

stricted by

j<[2h(p,e,)’/’]-’ (1)

which is the condition for the z independent modes to be

dominant in the magnetic material (see A7).

The stripline disk thickness is assumed to obey the

condition t<< h (see Fig. 1). Based on this, boundary

conditions at h < z < h + t and r= R, are not considered.

HI, FORMAL SOLUTION OF THE FIELD PROBLEM

The general expressions for the z independent modes in

the magnetic material are the well-known expansions [5]:

(2)Ejl)(r, @)= ~ A4nJ. (klr)e-~”+
n

H,$’)(r, P#))= ‘j Y,Z MnFn (klr, K/p)e-Jn@ (3)
n

1A second paper, including application to Circulators, is in PreP~a-
tionc

.2 I

(a) (b)

(c) (d)

Fig. 1. Cross section of stripline disk geometry bounded by either an
electric (a) or magnetic (b) waif at r = R,, samefor the microstrip disk
(c), and ‘(d), resp~ctively. “

Q-A’
Fig, 2, Conductor disk geometry and reference planes,

Ye=(q/pJ1/2.

The main steps in the derivation of the eigenfunctions

for the outer fields are given in the Appendix. In terms of

those functions, the fields between consecutive strips can

be written as2

E~2) (r, % z) = E z A.~ Cn (kzr)cos ~2z “e ‘J”+ (5a)
nm

~j2)(r,$, Z) ‘jx ~ Anm/32(k~r) -1 C. (k2r)sin&z one‘J”*
nm

(5C)

21n order to ~te general expressions for the fields below and above

cuttoff the symbol C; here means derivative with respect to the variable
r. For simplicity, kz and /32 stand for kzm and /32m, respectively.
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TABLE I
RADIAL EIGENFUNCTIONS Cn(/c2r)

I I

1 [2

Geometry

I

112
U’(Y2 .2) . 8* .(”FZ ) ~ E*

of F1g.1 I

Kn(jk~R2) Jn (k2 R2)
(a) , (c)

4
K jk2r) - — In (jkzr) Jn(k2r) - — Yn(k2r)

In (jk2R2) Yn (k2 R,)

K’ (Jk2R2) J’ (k2R2)
(b) , (d) K~jk2r) - ~ In (jk 2p) Jn (k2r) . ~ yn(k2?)

I; (jk2R2)
Y; (k2R2)

I

w t
------T

:h

EO
r .-

1

I

I
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_—_—-1”

t

u––-i

Fig, 3. Behavior of z component of electric field at the disk edge for
the stripline disk (first depth mode only).

where the eigenfunctions Cn are defined in Table I for the

two different boundary conditions at r = R2, relative to the

geometries of Fig. 1.

The relationship between the two sets of mode

coefficients M. and An~ will be obtained from the con-

tinuity of Ez at the edge of the disk:

EC1)(R1, +) + (higher order depth modes) = E$2)(R1,+,z)z

(6)

for~EI’l(i=l,2,... ,k), and O<z<2h+t(SD),0<z<h

(MD).

As an approximation to condition (6) the contribution

of the higher order modes is neglected, so that the inner

field is represented by (2) alone. This situation is sketched,

for the stripline disk, in Fig. 3, where

Eo(@)=E$’)(R1,@). (7)

In order to obtain a representation of the inner field in

the whole interval O< z < 2h + t,for this case, the function

of Fig, 3 is expanded as

(1 -- cosm7r)
E:*)(Rl,q4z) =2~o(@)~ m

case is the field representation in the interval O< z < h.

Using (2), (7), and (8) condition (6) yields

A~~ = O, m even (9a)

mnh J. (klR1) ~

()
A~~ = 1 sin —

mw 2h+t Cn(klR1) “’
m odd (9b)

with t = O in the microstrip geometry, to be understood

hereafter.

The continuity of the tangential magnetic field compo-

nent on the disk edge provides the relationship between

the coefficients M. and the port excitations. We have

H,$l)(R1, +) + (higher order depth modes) = H$)(R1, @,z).

(lo)

The integration of (10) along the disk depth yields

(11)

since the contribution of the higher order depth modes,

which vary as cos (m~z / h) (see Appendix), does not exist.

The integration is performed using the expansion (5e)

by eliminating the coefficients Ann through (9). The result

is

in which we define the fringing function of order

-2

[1

sin ~2h
$ — 2$-

2+; ~=1,3 . . . ~2h

with

We point out that the tangential magnetic field

nent is given by (12) only in the sectors r, and is

at the inner end of the lines on yi by the port excitation

Hi. The inversion of expansion (3) yields

n as

(13)

con-lpo-

defined

where p=O, Al, t2, . . . .

Substituting (12) in this equation and defining

(14)

(15)

(16)

For convenience, this same expansion with t= O is used

for the microstrip disk, since all that is required for this we obtain
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=&f Hibp, (17)
e~=l

where p=O, *l, &2,... .

This set of equations allows the determination of the

modal coefficients IMP for a general excitation of the disk

ports when the fringing fields are taken into account. Due

to the presence of the term klR1 one can expect that the

influence of these fields will be stronger at higher

frequencies.

IV. IMPEDANCE MATRIX

In this section a relationship between the port voltages

and currents at the disk reference planes is first derived

followed by the determination of the impedance matrix of

the K port.

To this end we introduce the following matrices:

m= [ ~.N ~–N+l .“” fkfN]’

f=[H, HZ “.. H~jr

IY=[vl V2 ““” vK]f

i=[ll 12 ““” lK]f

A=diag[A_~, A-N+l “ “ “ AN]

F=diag[ F_ N, F-N+l “ “ “ FN]

J=diag[J-N,J_N+l “ “ “ JN]

~=diag[ 1/~1, 1/42 - “ “ l/+K]

T= IITJII
l=– N,– N+ I,””” N
j=–iv, -N+l, . . . N

l=– N,– N+l,. ”” N
HMi=1,2, . .+ K“

The linear system defined by (17) can be written in

terms of these matrices if we neglect the contribution of

modes with order greater than N, this assumption imply-

ing the truncation of the infinite series down to 2N + 1

terms. This procedure allows the determination of the

mode coefficient vector as

J

–(

c2k1R1

)

–1

‘= 2TYe ‘–
— TJA B<. (18)

m,

Voltage and current at the ith disk reference plane are

given by

bi= -&~@’)(RI,4J)@ (19)

Id, = –4gR1+iHi (20)

where g= 1 (SD), 1/2 (MD). Hence, using (2) and (15) in

(19)

vd=–~WB+Jm (21)

Iid

Ii

—

a

Vid i-th port

vi

\

vi = Ai Vid + Bi Iid

Ii = Ci Vid + vi Iid

Fig. 4. Transfer parameters (6! ‘S3(?~ ) of the matching network at ith
port.

(22)

By substituting (22) in (18) and the result in (21), the

impedance matrix at the disk ports is obtained as

where

We point out that the matrices containing the informat-

ion about the number of ports, their positions and cou-

pling angles, are completely frequency independent. This

lends to (23) a great flexibility, which is useful for design

purposes.

Equation (23) clearly shows that Zd is anti-

Hermitean when the fringing fields are neglected (A= O).

In the general case, it is easily verified that the matrix T is
Hermitean and that the main diagonal strongly

dominates. All the numerical results showed that the ele-

ments of the Hermitean part of Zd were negligible so that

the losslessness condition Zd + Zd+ = O was always ap-

proximated with a very high degree of accuracy.

Describing the matching networks by their transfer

parameters (Fig. 4), we readily obtain the impedance

matrix at the K-port reference planes as

z=(ti?zd+%)(ezd+ ~)-l (24)

where

t?=diag[~l,%,.””,t?~]

and so on.

V. DISK REACTANCE

In this section an approximate quasi-static formula for

the isotropic microstrip disk is presented. The result is

compared to more exact methods previously published

[10]-[12]. Numerical results, obtained with the inclusion of

higher order modes and experimental data for 2 proto-

types are also presented.
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20. - [IO] Itoh 8 Mittro

[Ill Borkor8Yong

Io. – [12] Coen~ Glodwell
“K
1=
*-

g 5.0 –
El. Ez= 2.65E0

2’0–
EMW

02 05 10

h/Rl

Fig. 5. Microstnp disk capacitance.

For the quasi-static formula, only the zero order

aximuthal mode is retained and since ZC=l all the

matrices of (23) become scalars; as follows:

B= bol, F=FO, J= Jo, T=TW, A=AO

with bO1= 21P1 and Tw = 2(7r – +1) as defined by (15) and

(16), respectively. With the small argument approxima-

tions: Jo(x) = 1 and J,(x)= x/2, the disk capacitance is

obtained from (23) as

When R, >>h and Q<< 77/2, an approximate expression

for the ze~o order fringing function can

retaining only the first term in (13):

A = ~ 3~ ‘l(m&2)
o

()~ R, Ko(&2) “

be found by

(26)

Fig. 5 shows the normalized capacitance, as computed

via (25) and (26) for $ = O and c1= Cz, compared to results

published in references [ 10]-[ 12]. The horizontal dashed
line is the result when fringing fields are neglected (A.=
o).

This quasi-static approximation is severely restricted in

frequency range due to the appearance of higher order

azimuthal modes resonances. This is exemplified in Fig. 6

where experimental data are checked against formula (25)

and numerical results obtained with N = 3 (n= O, + 1, &

2, f 3) in (23), with and without fringing fields. Experi-

mental measurements were taken at the end of the input

line (r= RJ and transferred to the disk edge. The upper

measurement frequency was limited by the appearance of

losses. Fig. 7 shows the results for a low dielectric con-

stant stripline disk geometry. It is apparent that the ex-
perimental points agree very well with the present theory,

while the EMW theory yields considerable error.

In order to illustrate the convergence of numerical

results when the number of modes is increased, the input

impedance of the disk of Fig. 6 is plotted in Fig. 8, for N

ranging from 1 to 3.

-150. -

100.–

~ 50.-
=

:“c0
z0 -50,-
e

3
c I

EMW (N-3)-----
-150- .! I,

El= E2=to EO 1
I

I I I I I I I I I I I 1
0. 1.0 2.0 30 40 50

frequency (GHz)

Fig. 6. Experimental rnicrostrip disk input impedance compared to
quasi-static formula and to full theory; with and without fringing
fields (EMW).

geometry .(see F!g lb) i .
150 -

1“
I 2WI=0.28 “ /

-e

- L :z
.

100 -zlN= JX 9
“ >;. d

.
g so
0
z0

02
.

s

-150 - ---- EMW (N=3)

II I 1 [ 1 I 1 t I I 1 1 1 I 1
0 I 2. 3 4. 5 6. 7

frequency (6 Hz)

Fig. 7. Experimental stripline disk input impedance compared to the-

ory, as in Fig. 6.

0
‘“0 kiR, 2“0

30

Fig. 8. Convergence of numerical results plotted in Fig. 7 for three
different numbers of modes; with and without fringing fields (dashed
line).

VI. RECIPROCAL TRANSMISSION ZEROS

In order to find the relative position of two ports which

are optimal with respect to transmission zero properties

the transmission parameter 5’21, computed from (23), was

investigated. To speed computations the fringing function

is neglected in the first step where the search for an
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15 20 25 30
0.”

~ 10.

-—
G

Q 20.
u-)
(n
o
-J 30.

z
Q
$-j 40.

~

~ 50.
m
F-

60. I I 1 I 1
10 I.5 2.0 25 3.0

RADIAL WAVE NUMBER XRADIUS(KI RI)

Fig. 9. Transmission loss (relative to 50 G?) for four different port

positions; without fringing fields and for N= 3.

I 1.5 2.0 25 3.0

1.0 15 2.0 2.5 3.0

RADIAL WAVE NUMBERX RADIUS (KIRI)

Fig. 10. Transmission loss (relative to50Q)for the90"2portof Fig.9

and forthree numbers of modes; fringing fields included.

optimum port position is done (Fig. 9). It is clear from

Fig. 9 that a useful geometry for a band elimination filter

is the 90° 2-port disk. Fig, 10 shows the parameter S21 for

this geometry, computed for iV = 1-3, fringing fields in-

cluded.

The numerical results of Figs. 9 and 10 for iV = 3 are

reproduced in Fig. 11, together with the experimental

data.3

VII. CONCLUSIONS

A self consistent theory for the analysis of a disk n port,

which includes the fringing fields and is also applicable to

nonreciprocal devices has been developed. Application to

the microstrip disk capacitor led to a useful approximate

formula that shows good agreement with previously pub-

lished work. Applicability to numerical design is exem-

plified with the search of transmission zeros in reciprocal

2-port disks. Numerical results, when compared with

3The computation time for the scattering parameters of Fig. 11 was
0.5s, each point, for the complete analysis and 0.3s without fringing
fields, in a Burroughs 6.700 machine.
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Fig. 11. Experirnentrd band-efimination filter response compared to
results of this theory and with those provided by EMW assumption;

geometry: stripline disk (Fig. l(b)) with parameters insert on Fig. 9.

The disk is directly coupled to 50-S2 stnplines.

those provided by the EMW assumption and with experi-

mental data, show that the inclusion of the fringing fields

significantly reduces the error in both impedance levels

and resonant frequencies.

VIII. APPENDIX

The geometry of the structure, together with Maxwell’s

equations and separation of variables, leads to the follow-

ing form for the fields in both regions:

J9iJ(~,@,z) G 13}iJ(r, @)sin~iz + ~~’)(r,@)cos~iz2 (Al)

H(i)(r, 1#, Z) = li)i)(r,+)cos~iz, i=l,2 (A2)

where Et and Hf are parallel to the ground plane. Only the

modes without RF magnetic field in the z direction are

being considered.

Substitution of (Al) and (A2) into Maxwell’s equations

leads to Helmholtz’s homogeneous equation for E=:

(V’+ k,?jEj’)(r,@) =0 (A3)

with

k;= u’piei – ~f, i=l,2. (A4)

In cylindrical coordinates (A3) yields the eigenfunctions

Jn (klr)e ‘~n+, forr<R1

Jn (kzr)e ‘~no, Yn (Iqr)e ‘Jno, for R1<r<R2.

The depth wave number ~i is determined by

boundary conditions

if X E(’)(r, $,z) =0

with z = h and 2h + t for i = 1 and 2, respectively,

the

for

stripline geometry. For the microstrip disk the condition

for E(l) is ret3eated, but. for the outer fields due to the
assumed magnetic wall at z = h, the boundary condition is

2 X H(2)(r, @,h) =0.

Therefore,

~1~ = mr/h (A5)

L= mn/(2h + t) (SD), m=0,1,2, . . . (A6a)

b~~ = mT/2h (MD), m=l,3,5, -.. . (A6b)
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The integer m defines the order of the depth mode. The

cutoff frequency4 Q,m of the mth depth mode in region i is,

from (A4),

W,* = ~,m ( pici)-’t’. (A7)

The sign of k, and kz for the modes below cutoff must

be chosen so that the respective eigenfunctions corre-

spond to a decaying field in the radial direction (inwards

in medium 1 and outwards in medium 2). This condition

leads to the choice of

k,= –j( fl,’ –ti2ptq)1’2 when a< ~, ( pie,)- ‘/2. (A8)

The knowledge of the ~z function allows the determina-

tion of the field components through the application of

Maxwell’s equations to (Al) and (A2). The eigenfunctions

of the zeroth order depth mode of region 1 were de-

termined in [5] and are displayed in Section I of this work.

For the outer region we obtain

(A9)

(A1O)

– 1E(2) (All)H$% = jtiez( t!12~tanp’~z) ,~~

‘1 E(2) (A12)H$~~ = – jcdez( P2~ tanP2mz) +nm

where l?~2)(r, q) = C~(&)e ‘“Jn@and the Cn are linear com-

binations of the radial eigenfunctions J. and Yn, displayed

in Table I, chosen so as to satisfy the boundary condition

at r= R2 for either the electric or magnetic wall. For

numerical purposes, the special Bessel functions are used

when k2 is imaginary,

FJOMENCLATURE

r,+, z Cylindrical coordinates.

R,, R2 Disk and outer dielectric radii.

I+, r, Sectors of disk edge.

24Ji Coupling angle at ith port.

h Disk to ground plane spacing.

t Stripljne disk conductor thickness.

& l?’,; Normalized quantities with respect to h.

~, K Diagonal anc[ off-diagonal elements of the

Polder tensor [13].

c,)~, Permittivity rind effective permeability of

region i (i= 1, 2) with PI =( p2– K2)/p and

P2= PO-
Ye Intrinsic wave admittance of region 1.

qrhe frequency at w~ic~ radially oscillatory fields transform into

decaying fields and vice versa.

/?i,ki Depth and radial wave numbers.

f-l Normalized frequency.

Jn, Yn 13essel functions of first and second kind

and order n.

In, Kn special 13essel functions of first and second

kind.

~ Summation over all integers.

2 Summation over all nonnegative integers,
m unless otherwise specified.

Hi Azimuthal component of RF magnetic field

at ith port.

EMW Edge magnetic wall boundary condition.

(SD) Relative to stripline disk geometry.

(MD) Relative to microstrip disk geometry.

Depth modes z-dependent modes.
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