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Analysis of Planar Disk Networks

RENE R. BONETTI anp PLINIO TISSI

Abstract—The impedance matrix of a disk n-port is determined with
fringing fields at the disk edge included in the analysis. The theory is valid
for both stripline and microstrip geometries and is alse applicable to
magnetic substrates. A simple quasi-static appreximation to the disk
capacitance is obtained. Applicability to numerical design is exemplified
with the search for transmission zeros in a reciprecal 2 port. Experimental
results are presented for the 1-port and 2-port disks.

I. INTRODUCTION

LANAR NETWORK theory is becoming a powerful
tool for the design of microwave integrated circuits
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[1]{4]. When compared to other physical structures,
planar networks offer the designer considerable freedom,
due not only to their size and shape but also to the large
variety of devices realizable with simple geometries.

A very simple shape, the disk, has already proven very
useful for the realization of junction circulators and pre-
sents interesting possibilities for other devices.

Well known theories for disk networks on magnetic
substrate [5]-[7] make use of the edge magnetic wall
(EMW) as a boundary condition at the disk edge and,
therefore, exterior fields are not included in the analysis.
With respect to this problem we quote Bosma [8]: “It is
the unsolved problem of the fringing field that makes
numerical design of circulators not yet very spectacular.”
Furthermore, in a recent paper by de Santis [9] transitions
from volume modes to edge guided modes were shown to
be strongly influenced by these fields.

0018-9480,/78 /0700-0471$00.75 © 1978 IEEE
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This work presents a theory for the general multiport
disk, which includes an analytical treatment of the fring-
ing fields and is also applicable to magnetic substrates. As
a consequence, it represents a sound basis for the accurate
design of MIC devices such as resonators, filters, and
circulators. The theory lends itself well to computational
implementation and numerical synthesis since the eigen-
functions are computed independently of the number,
positions, and widths of the ports. Consequently, the
search for optimum port parameters is performed by
means of relatively simple algorithms.

Examples of applications are given for isotropic resona-
tors and filters.!

II. FORMULATION OF GEOMETRY AND BASIC
HYPOTHESES

The network consists of a highly conducting disk,
placed either between (Fig. 1(a) and (b)) or above (Fig.
I(c) and (d)) a magnetic substrate, extending only to the
disk edge, and magnetized in the z direction. The outer
dielectric extends to infinity, or is bounded along a circu-
lar contour, by an electric or magnetic wall. The geometry
in the z direction is one of the two types described in Fig,
1. The disk is coupled to K ports, each spanning an angle
2y, (i=1,2,- - ,K) at the edge, in such a way that no two
ports have any points in common (Fig. 2). Each port is
connected to a line, which is inbedded in the homoge-
neous outer dielectric.

As in previous works [S]-[7] the azimuthal component
of the RF magnetic field is assumed as constant along the
ports and only TM modes relative to the z axis are
considered. In the microstrip cases (Fig. 1(c) and (d)) the
exterior fields (R, <r< R,) are limited from above by a
magnetic wall paralle]l to the ground plane at z=A. Cou-
pling between the exterior fields and the strip or micro-
strip lines is neglected. The operating frequency is re-
stricted by

F<[2h(me)'?]™ (1
which is the condition for the z independent modes to be
dominant in the magnetic material (see A7).

The stripline disk thickness is assumed to obey the
condition t<h (see Fig. 1). Based on this, boundary
conditions at A<z < h+¢ and r= R, are not considered.

III. Formar SoLuTiON OF THE F1eLD PrOBLEM

The general expressions for the z independent modes in
the magnetic material are the well-known expansions [5]:

ED(r,¢)= 2 M,J, (kyr)e @
H{)(r,¢)==j Y, 2 M,F, (kyr,x/p)e ™" ®3)

n‘ln(klr)
k,r

HO(r¢)=Y,3 M, - %J,: (kyr) e (4)

A second paper, including application to circulators, is in prepara-
tion.
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Fig. 1. Cross section of stripline disk geometry bounded by either an

electric (a) or magnetic (b) wall at r= R,, same for the microstrip disk
(c), and (d), respectively.
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Fig. 2. Conductor disk geometry and reference planes.

where
n‘]n (klr)

F, (ki /w)=J; (ki) = o =

1/2
Y, =(e/ 1) 2,

The main steps in the derivation of the eigenfunctions
for the outer fields are given in the Appendix. In terms of
those functions, the fields between consecutive strips can
be written as?

Ez(Z)(r’ (P,Z) = 2 2 Anm Cn (kzr)COS 1822 ,e—jn¢ (sa)
EISZ)("’ 4)’2) =- 2 2 AntZkZ_ZCr: (er)SinlB2Z ,e-—jmp
(5b)
EP(r,¢,2) =] 2 ApnBy(K3r) ™' C, (kyr)sin Bz -ne =
n m

(5¢)

2In order to write general expressions for the fields below and above
cuttoff the symbol C, here means derivative with respect to the variable
r. For simplicity, k, and 8, stand for k,,, and B,,,, respectively.
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TABLEI
RADIAL EIGENFUNCTIONS C, (k,r)

1/2 1/2
wluzea) < By wlugez) > By

Geometry
of F1g.1
Kp(Jk2Rs) J (kg Ry)
(@ . () Kfker) = S 1 (Fkar) | 3 (gr) - 2 2 ler)
I (JkaRe) Yy (k2 Ro)
K (3kaRp) 3! (k,Ry)
®) . (@ Kdker) = B2 1 Gker) |3 () - B Y (k)
I3 (3kzRz) Y! (KaRo)
4 €, (R.0,2)
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Fig. 3. Behavior of z component of electric field at the disk edge for
the stripline disk (first depth mode only).

HO(r,¢,2)=we; >, DA, (k3r) ' C, (kyr)cos B,z -ne ¢
n m
(5d)
HP(r,¢,2)= —jwe, >, > Aynks 2CL (kyr)cos B,z -e =/

(5¢)
where the eigenfunctions C, are defined in Table I for the
two different boundary conditions at r = R,, relative to the
geometries of Fig, 1.

The relationship between the two sets of mode
coefficients M, and A4,, will be obtained from the con-
tinuity of E, at the edge of the disk:

EM(R,,¢)+ (higher order depth modes)=EP (R, ¢,z)

(6)
foroel, (i=1,2,---,k),and 0<z<2h+1 (SD), 0<z< h
(MD).

As an approximation to condition (6) the contribution
of the higher order modes is neglected, so that the inner
field is represented by (2) alone. This situation is sketched,
for the stripline disk, in Fig. 3, where

E0(¢)=Ez(l)(R1a¢)- (M
In order to obtain a representation of the inner field in

the whole interval 0< z <2k + ¢, for this case, the function
of Fig. 3 is expanded as

(1—cosmam)

EP(Ry,¢,2) =2Eo(¢) 2

m

mmh maz

'Sin( 2h+1 )“’S( 2h+1 ) ®)

For convenience, this same expansion with =0 is used
for the microstrip disk, since all that is required for this
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case is the field representation in the interval 0<z <h.
Using (2), (7), and (8) condition (6) yields
(%)

Apm=0, m even

_ . mah \ In (kiRy)
A= —— sin ( 2h+t) C. (R M, modd (9b)

with t=0 in the microstrip geometry, to be understood
hereafter.

The continuity of the tangential magnetic field compo-
nent on the disk edge provides the relationship between
the coefficients M, and the port excitations. We have

H{V(R,,$)+ (higher order depth modes)= H{?(R,,¢,z).
(10)
The integration of (10) along the disk depth yields

HOR )= [ HORep)de (1)

since the contribution of the higher order depth modes,
which vary as cos(mmnz / k) (see Appendix), does not exist.

The integration is performed using the expansion (5¢)
by eliminating the coefficients A4,,, through (9). The result
is

Htgl)(Rh(p): _2jw€2R12Man (klRl)Ane_jn¢ (12)
in which we define the fringing function of order » as
A=A, (R, R, 7)

2

24+ m=13--

Mg

{ sinf3,h rR1 G, (0 (13)

Bh | ¥ C,(0
with
Q=wh( .U2€2)1/2

mm )2

R2.
2+t

x2=k§R12=[92—(

We point out that the tangential magnetic field compo-
nent is given by (12) only in the sectors I', and is defined
at the inner end of the lines on y; by the port excitation
H,. The inversion of expansion (3) yields

K
. -1
M,=jQ2aY F,)" X

=1
[ [Hertap+ [ HOR, p)er*dy| (14)
7 T,

where p=0, +1,+2,-.- .
Substituting (12) in this equation and defining

bp,=fj'[’exp[jp(¢+oi)]d¢ (15)

K
T,= > frexp[j(p—n)qs]w (16)

=1

we obtain



474

kiR, €
F;)Alp - _77_ E_l- ; AnMn Tnp"n (klRI)

j K
= 7aY, ingb )
where p=0,+1,+2, ---

This set of equations allows the determination of the
modal coefficients M, for a general excitation of the disk
ports when the fringing fields are taken into account. Due
to the presence of the term kR, one can expect that the
influence of these fields will be stronger at higher
frequencies.

IV.

In this section a relationship between the port voltages
and currents at the disk reference planes is first derived
followed by the determination of the impedance matrix of
the K port.

To this end we introduce the following matrices:

IMPEDANCE MATRIX

m=[M_y M_y, My’
¢=[H, H, Hy]'

v=[V, W, Vel

i=[1, L I ]’

A=diag[ A_y,A_yy, Ay ]
F=diag[ F_y,F_yy, Fy]
J=diag[ J_y,J _n+1 Iy ]
¥=diag[ 1/¢1,1/¢, /4]
=T, T ]]Vvill N
Y S

The linear system defined by (17) can be written in
terms of these matrices if we neglect the contribution of
modes with order greater than N, this assumption imply-
ing the truncation of the infinite series down to 2N +1
terms. This procedure allows the determination of the
mode coefficient vector as

=3 F— 6k R,
27Y, e,

BE.

TJA) (18)

Voltage and current at the ith disk reference plane are
given by

Vy=— fy EO(R,,¢)dé (19)

I;=—-4gR Y H (20)
where g=1 (SD), 1/2 (MD). Hence, using (2) and (15) in
19

h

=~ Z¥B*Jm 1)
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Fig. 4. Transfer parameters (€% CD) of the matching network at ith
port.

Wi, (22)

—__1
€= 4gR,

By substituting (22) in (18) and the result in (21), the
impedance matrix at the disk ports is obtained as

R -1
Z,=jZ,¥B *J(F ﬂi ‘TJA) BY¥
i
or
. €k R, !
z,=jz¥B*(F'-Z1A| BY  (23)
1
where
___h 1/2
ZO léngl (H‘l/el) .

We point out that the matrices containing the informa-
tion about the number of ports, their positions and cou-
pling angles, are completely frequency independent. This
lends to (23) a great flexibility, which is useful for design
purposes.

Equation (23) clearly shows that Z, is anti-
Hermitean when the fringing fields are neglected (A=0).
In the general case, it is easily verified that the matrix T is
Hermitean and that the main diagonal strongly
dominates. All the numerical results showed that the ele-
ments of the Hermitean part of Z, were negligible so that
the losslessness condition Z,+ Z; =0 was always ap-
proximated with a very high degree of accuracy.

Describing the matching networks by their transfer
parameters (Fig. 4), we readily obtain the impedance
matrix at the K-port reference planes as

Z=(@Z,+B)NCZ,+D)™! 29

where
@ =diag[ &, &, -, @k]

and so on.

V. DIsk REACTANCE

In this section an approximate quasi-static formula for
the isotropic microstrip disk is presented. The result is
compared to more exact methods previously published
[10]-[12]. Numerical results, obtained with the inclusion of
higher order modes and experimental data for 2 proto-
types are also presented.
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Fig. 5. Microstrip disk capacitance.

For the quasi-static formula, only the zero order
aximuthal mode is retained and since K=1 all the
matrices of (23) become scalars; as follows:

B=by, F=F, J=J, T=Ty A=A,

with by =2V, and Tpy=2(w—1,) as defined by (15) and
(16), respectively. With the small argument approxima-
tions: Jy(x)=1 and J,(x)=x/2, the disk capacitance is
obtained from (23) as

RZ
C=e, L [1+43(1~ il )AO}.

h € Ea 25)

When R,>h and Q< 7/2, an approximate expression
for the zero order fringing function can be found by
retaining only the first term in (13):

=(Z)3L KI(WRAI/Z)
’ ﬁl Ko(7ﬁ1/2)'

Fig. 5 shows the normalized capacitance, as computed
via (25) and (26) for ¢ =0 and ¢, =¢,, compared to results
published in references [10]-{12]. The horizontal dashed
line is the result when fringing fields are neglected (A,=
0).

This quasi-static approximation is severely restricted in
frequency range due to the appearance of higher order
azimuthal modes resonances. This is exemplified in Fig. 6
where experimental data are checked against formula (25)
and numerical results obtained with N=3 (n=0,*1, =
2, +3) in (23), with and without fringing fields. Experi-
mental measurements were taken at the end of the input
line (r=R,) and transferred to the disk edge. The upper
measurement frequency was limited by the appearance of
losses. Fig. 7 shows the results for a low dielectric con-
stant stripline disk geometry. It is apparent that the ex-
perimental points agree very well with the present theory,
while the EMW theory yields considerable error.

In order to illustrate the convergence of numerical
results when the number of modes is increased, the input
impedance of the disk of Fig. 6 is plotted in Fig. 8, for N
ranging from 1 to 3.

(26)

K
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geometry: (see Fig.1d)

150 - )-lel
o= 7= j Xg

100. 7N
R|-08cm Rz-50cm
50~ h-0I59cm  Y-Ql

-
) =

Formula(25)

input reactance X(Q1)

-50. /

I esesss measured I
—|oo.—‘.’ -—~——— this theory {N=3) '/
1
_____ W (Ne i
sl EMW (N=3) i
£2£,210 € i

I | | I |

) 1.0 20

frequency (GHz)

Fig. 6. Experimental microstrip disk input impedance compared to
quasi-static formula and to full theory; with and without fringing
fields (EMW).

geometry.(see Fig.1b)

o 24-028
L

100

so0l- R=164cmRz=50¢cm, ¢

mput reactance X(0)

"
-50 - ,/ E=Er245,
* + + measured

SO0 s theory (N=3)

—-——— EMW (N=3)

it
q
!
I
it
h

-150

frequency (GHz)

Fig. 7. Experimental stripline disk input impedance compared to the-
ory, as in Fig. 6.

2.

8.

0. 4,

input reactance X, (x10'

-12. -8 -4,

J 1 1
10
KR,

Fig. 8. Convergence of numerical results plotted in Fig. 7 for three
different numbers of modes; with and without fringing fields (dashed
line).

o

VI. RECIPROCAL TRANSMISSION ZEROS

In order to find the relative position of two ports which
are optimal with respect to transmission zero properties
the transmission parameter S,,, computed from (23), was
investigated. To speed computations the fringing function
is neglected in the first step where the search for an
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9. Transmission loss (relative to 50 Q) for four different port
positions; without fringing fields and for N=3.
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Fig. 10. Transmission loss (relative to 50 §2) for the 90° 2 port of Fig. 9
and for three numbers of modes; fringing fields included.

optimum port position is done (Fig. 9). It is clear from
Fig. 9 that a useful geometry for a band elimination filter
is the 90° 2-port disk. Fig. 10 shows the parameter S,, for
this geometry, computed for N=1-3, fringing fields in-
cluded.

The numerical results of Figs. 9 and 10 for N=3 are
repro3duced in Fig. 11, together with the experimental
data.

VII. CONCLUSIONS

A self consistent theory for the analysis of a disk » port,
which includes the fringing fields and is also applicable to
nonreciprocal devices has been developed. Application to
the microstrip disk capacitor led to a useful approximate
formula that shows good agreement with previously pub-
lished work. Applicability to numerical design is exem-
plified with the search of transmission zeros in reciprocal
2-port disks. Numerical results, when compared with

3The computation time for the scattering parameters of Fig. 11 was
0.5s, each point, for the complete analysis and 0.3s without fringing
fields, in a Burroughs 6.700 machine.
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Fig. 11. Experimental band-elimination filter response compared to

results of this theory and with those provided by EMW assumption;
geometry: stripline disk (Fig. 1(b)) with parameters insert on Fig. 9.
The disk is directly coupled to 50-Q striplines.

those provided by the EMW assumption and with experi-
mental data, show that the inclusion of the fringing fields
significantly reduces the error in both impedance levels
and resonant frequencies.

VIIL.

The geometry of the structure, together with Maxwell’s
equations and separation of variables, leads to the follow-
ing form for the fields in both regions:

EO(r,¢,2)=EP(r,¢)sinfiz + EXNr,p)eos fizZ  (Al)

HO(r,¢,z2)=H(r,p)cos Bz, i=12 (A2)
where E, and H, are parallel to the ground plane. Only the
modes without RF magnetic field in the z direction are
being considered.

Substitution of (A1) and (A2) into Maxwell’s equations
leads to Helmholtz’s homogeneous equation for E,:

(V2 + K2)E9(r,4) =0

APPENDIX

(A3)
with
K=wwe— B2 i=1,2. (A4)
In cylindrical coordinates (A3) yields the eigenfunctions
J, (k;r)e =",
S, (kor)e ™, Y, (kyr)e ™",

The depth wave number B; is determined by the
boundary conditions

EXEI(r,,2)=0

with z=h and 2A+¢ for i=1 and 2, respectively, for
stripline geometry. For the microstrip disk the condition
for ED is repeated, but, for the outer fields due to the
assumed magnetic wall at z = A, the boundary condition is

X HO(r,¢,h)=0.

forr< R,
for R, <r<R,.

Therefore,
Bim=mm/h (AS)
Bom=mn/(2h+1t) (SD), m=0,1,2,--- (A6a)
Byn=mm/2h (MD), m=1,3,5,---. (A6b)
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The integer m defines the order of the depth mode. The
cutoff frequency® w,, of the mth depth mode in region i is,
from (A4),

Wy, = IBtm ( p‘iei)_ 1/2' (A7)

The sign of k, and k, for the modes below cutoff must

be chosen so that the respective eigenfunctions corre-

spond to a decaying field in the radial direction (inwards

in medium 1 and outwards in medium 2). This condition
leads to the choice of

ki=—j(B?~ wzﬂxfx)l/z when w<B (me)” 12, (A8)

The knowledge of the E, function allows the determina-
tion of the field components through the application of
Maxwell’s equations to (Al) and (A2). The eigenfunctions
of the zeroth order depth mode of region 1 were de-
termined in [5] and are displayed in Section I of this work.
For the outer region we obtain

E¢Sn2n= B2mk2 Tan_SlnB2mz (A9)
BE®

EQn=Boks > 5 sin B2 (A10)

H), = joey By tanfy,z) " ER, (A11)

HD) = — jwey( By, tan By,,z)~ lEqE%Zn (A12)

where E(r,¢)= C,(K,r)e /" and the C, are linear com-
binations of the radial eigenfunctions J, and Y, displayed
in Table I, chosen so as to satisfy the boundary condition
at =R, for either the electric or magnetic wall. For
numerical purposes, the special Bessel functions are used
when k, is imaginary.

NOMENCLATURE
7,9,z Cylindrical coordinates.
R,R, Disk and outer dielectric radii.
YT, Sectors of disk edge.
2y, Coupling angle at ith port.
h Disk to ground plane spacing.

t Stripline disk conductor thickness.

R‘l,ﬁz,th Normalized quantities with respect to A.

s K Diagonal and off-diagonal elements of the
Polder tensor [13].

€, 1 Permittivity and effective permeability of
region i (i=1,2) with p,=(p?*—x?/p and
o= U

Y, Intrinsic wave admittance of region 1.

“The frequency at which radially oscillatory fields transform into
decaying fields and vice versa.
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Bisk; Depth and radial wave numbers.
Q Normalized frequency.
J.. Y, Bessel functions of first and second kind
and order a.
IL.K, Special Bessel functions of first and second
kind.

Summation over all integers.

Summation over all nonnegative integers,
unless otherwise specified.

Azimuthal component of RF magnetic field
at ith port.

o sM s

EMW Edge magnetic wall boundary condition.
(SD) Relative to stripline disk geometry.
MD) Relative to microstrip disk geometry.

Depth modes z-dependent modes.
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